

Materialdatenblatt

Feinpolyamid PA 2200

PA 2200 ist ein Feinpulver auf Basis von Polyamid-12. Bedingt durch das Herstellungsverfahren weist PA 2200 im Vergleich zum Standard PA 12 eine höhere Kristallinität und einen höheren Schmelzpunkt auf.

Typische Anwendungen des Werkstoffes sind voll funktionsfähige Bauteile in Designqualität, die hohen mechanischen und thermischen Belastungen ausgesetzt sein können.

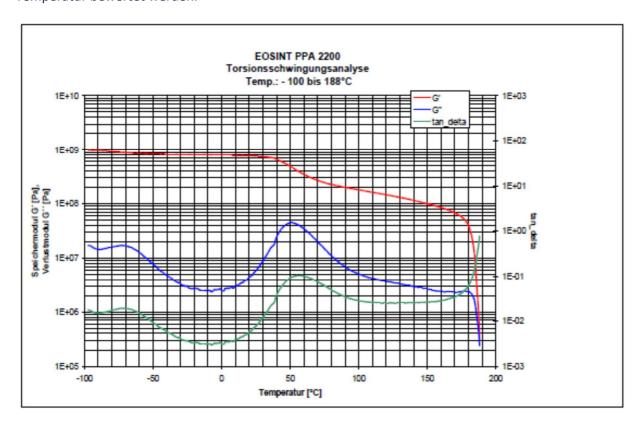
Allgemeine Materialdaten:

Mittlere Korngröße	58	μm
Schüttdichte	0,435-0,445	g/cm³
Dichte lasergesintert	0,9-0,95	g/cm³

Mechanische Kennwerte*:

Zug-E-Modul	1700±150	N/mm²
Zugfestigkeit	45±3	N/mm²
Reißdehnung	20±5	%
Biege-E-Modul	1240±130	N/mm²
Charpy-Schlagzähigkeit	53±3,8	kJ/mm²
Charpy-Kerbschlagzähigkeit	4,8±0,3	kJ/mm²
Izod-Schlagzähigkeit	32,8±3,4	kJ/mm²
Izod-Kerbschlagzähigkeit	4,4±0,4	kJ/mm²
Kugeldruckhärte	77,6±2	
Shore D-Härte	75±2	

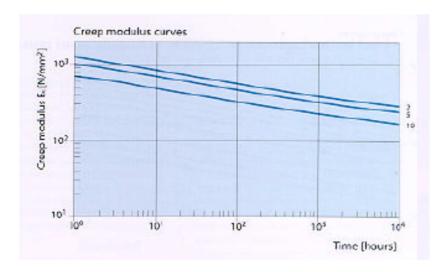
^{*}Die mechanischen Eigenschaften können in Abhängigkeit der X-,Y-,Z-Lage der Prüfkörper und den Belichtungsparametern variieren.

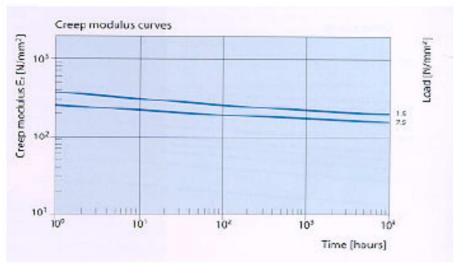

Thermische Eigenschaften:

Schmelztemperatur	184	°C
Schmelzenthalpie	ca. 115	J/g
Rekristallisationstemperatur	138	°C
Vicaterweichungstemperatur B/50	163	°C
Vicaterweichungstemperatur A/50	181	°C
Wärmeleitfähigkeit senkrecht zur Sinterschicht	0,144	W/mK
Wärmeleitfähigkeit parallel zur Sinterschicht	0,127	W/mK
Therm. Längenausdehungskoeffizient	1,09	x10 ⁻⁴ /K
Spezifische Wärmekapazität	2,35	J/gK

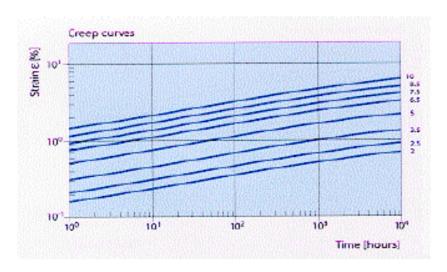
Temperaturabhängigkeit der mechanischen Eigenschaften

Die Kurzzeit-Temperaturabhängigkeit der mechanischen Eigenschaften von PA 12 können anhand des Verlaufes des Speicher- und Verlustmoduls, sowie des Verlustfaktors als Funktion der Temperatur bewertet werden.

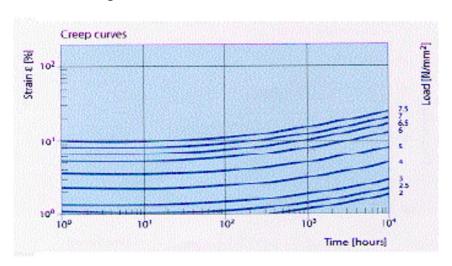

Generell weisen Polyamid 12-Teile im Temperaturbereich von -40°C bis +80°C unter dauerhafter Belastung eine hohe mechanische Festigkeit und Elastizität auf. Kurzzeitige Temperaturbeanspruchungen ohne Belastung sind bis Temperaturen von 160°C möglich.


Langzeit-Eigenschaften unter mechanischer Belastung und Temperatur

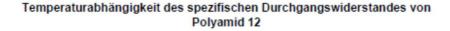
Kunststoffe weisen im Kurzzeitversuch eine höhere mechanische Festigkeit auf, als bei langfristiger kontinuierlicher Beanspruchung (>1000h). Ursache dafür ist das Kriechverhalten der Kunststoffe, welches verstärkt bei höheren Temperaturen auftritt und sich in der Abnahme des Moduls (Kriechmodul) niederschlägt. Für die Bestimmung von zulässigen Dauerbelastungen sind somit die Festigkeitskennwerte aus dem einachsigen Zeitstand-Zugversuch bei verschiedenen Belastungen und Temperaturen ein erster Richtwert (für komplexe Belastungen Werte nicht eindeutig).

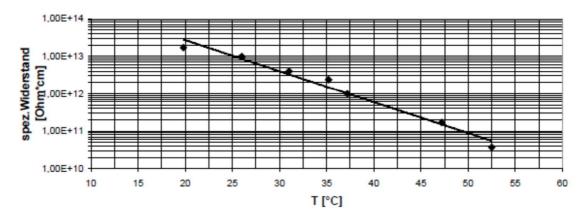


Kriechmodul-Kurven PA 12 bei T=23/100°C



Zeitdehnlinien PA 12 bei T=23/100°C



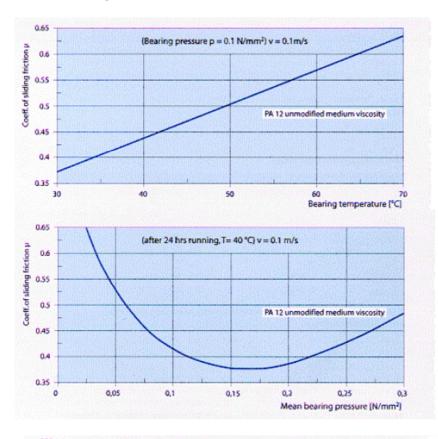


Elektrische Eigenschaften

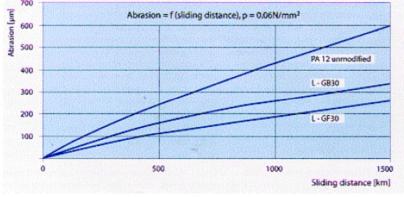
Spez. Durchgangswiderstand	10 ¹³ -10 ¹⁵	Ω*cm
Oberflächenwiderstand	10 ¹³	Ω
Dielektrizitätszahl (1kHz)	3,8	10 ² Hz
Durchschlagfestigkeit	92	kV/mm
Dielektrischer Verlustfaktor (1kHz)	0,05-0,09	

Die elektrischen Eigenschaften sind stark von der Temperatur und dem Feuchtigkeitsgehalt abhängig (siehe folgendes Diagramm). Die aufgeführten Werte charakterisieren das Material bei folgender Konditionierung: Lagerung bei 23°C; 50% relative Luftfeuchte bis zur Sättigung.

Brandverhalten


Das Pulver enthält keine Flammschutzadditive. Bauteile aus PA 2200 sind somit als brennbar einzustufen. Füllstoffe wie Glas verstärken die Brennbarkeit durch ihre Dochtwirkung. Bei Temperaturen oberhalb 350°C entstehen brennbare Gase. Bei ausreichender Luftzufuhr entstehen bei der Verbrennung Kohlenmonoxid, Kohlendioxid, Wasser und stickstoffhaltige Verbindungen.

Zündtemperatur	>350	°C
		UL 94
Brennbarkeit	НВ	(3,2mm)
		IEC 60707
		ISO 1210
Brennbarkeit	HB	(1,6mm)


Reibungsverhalten, Abrieb- und Verschleißfestigkeit

Polyamid 12 zeichnet sich durch einen niedrigen Reibungskoeffizienten und sehr gute Abriebbeständigkeit aus.

Gleitreibzahl in Abhängigkeit von Lagertemperatur (Lubrimeter-Test nach A.Bartel)

Gleitreibzahl in Abhängigkeit vom mittleren Flächendruck (Lubrimeter nach A.Bartel)

Gleitverschleiß als Funktion der Gleitstrecke L-GB30 – Glaskugeln L-GF30- Glasfasern

Abriebwerte von Sinter-Prüfkörpern nach Taber

PA 2200	34	mg
PA 3200 GF	30	mg

Die vorstehenden Angaben beziehen sich auf die Charakterisierung des Materials und nicht eines Fertigteils. Die Angaben entsprechen dem heutigen Stand unserer Erkenntnisse und Erfahrungen, Sie stellen keine Gewährleistung oder Zusicherung dar. Sie haben nicht die Bedeutung, bestimmte Eigenschaften des Produktes oder die Eignung für einen konkreten Einsatzzweck zuzusichern.

Chemische Beständigkeit von PA 12

++ = beständig + = praktisch beständig o = bedingt beständig

- = wenig beständig -- = unbeständig

Prüfdauer		6 Monate	4Wochen
Medium	Konzentration	20°C	60°C
Aceton	100	++	++
Akkusäure	10	-	
Ameisensäure		++	0
Ammoniak, wässrige Lösung		++	++
Anilin	100	+	
Apfelsaft		++	++
Asphalt		++	++
Bariumsalze		++	++
Benzin		++	++
Benzol	100	++	0
Bier		++	
Bremsflüssigkeit		++	++
Butan, gasförmig	100	++	++
Butan, flüssig	100	++	
Butter		++	
Chromsäure	10		
Cyclohexanon	100	++	О
Dibutylphtalat (Vesinol C)		++	++
Diethylether (Kp 35°C)	100	+	
Dioctylphtalat (Vestinol AH)		++	++
Dixan Lauge	gebrauchsfertig	++	++
Essigsäure	10	++	-
Ethylacetat		++	+
Ethylalkohol, unvergällt	100	++	+

·			
Fisch		++	
Flußsäure	40	-	
Frostschutzmittel		++	++
Geschirrspülmittel		++	++
Glycerin	100	++	++
Glykol	100	++	++
Heizöle		++	++
Kaffee, trinkfertig		++	
Kalilauge	50	++	++
Kaliumchlorat, wässrige Lösung	Kalt gesättigt (7,3)	+	0
Kaliumpermanganat wässrige Lösung	Kalt gesättigt (6,4)	-	
Leinöl		++	++
Methanol	100	++	+
Milch		++	++
Milchsäure, wässrige Lösung	10	+	0
Natriumchlorid, wässrige Lösung	Kalt gesättigt	++	++
Natriumhypochlorid wässrige Lösung	5	+	-
Natronlauge	50	++	++
Ozon (0,5 ppm)		0	
Paraffin	100	++	++
Persil Lauge	gebrauchsfertig	++	++
Petroleum	100	++	++
Propan, gasförmig	100	++	++
Pyridin	100	++	
Rum	40	++	++
Salpetersäure	10		
Salzsäure	10		
Schmierseife		++	++
Schwefel	100	++	++
Schwefelsäure	10	+	-
Seewasser		++	++
Silikonöle		++	++
Speiseöl, tierisch + pflanzlich		++	++
Toluol	100	++	-
Tomatensaft		++	++
Trichlorethylen	100	0	-
Wasser	100	++	++
Wasserstoffperoxid, wässrige Lösung	30	++	
Whisky	40	++	
Xylol	100	++	0
Zitronensäure, wässrige Lösung	Kalt gesättigt	++	0
Zitronensaft		++	++
Zuckerlösung	jede	++	++

 $Quelle: EOS\ GmbH\ Electro\ Optical\ Systems\ "PA2200_Product_information_de.doc"\ Stand:\ 01.09.2011$